4.5 Article

Einstein-Cartan gravity, Asymptotic Safety, and the running Immirzi parameter

期刊

ANNALS OF PHYSICS
卷 334, 期 -, 页码 351-419

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.aop.2013.04.002

关键词

Quantum gravity; Asymptotic Safety; Immirzi term; Ashtekar variable; Einstein-Cartan gravity

向作者/读者索取更多资源

In this paper we analyze the functional renormalization group flow of quantum gravity on the Einstein-Cartan theory space. The latter consists of all action functionals depending on the spin connection and the vielbein field (co-frame) which are invariant under both spacetime diffeomorphisms and local frame rotations. In the first part of the paper we develop a general methodology and corresponding calculational tools which can be used to analyze the flow equation for the pertinent effective average action for any truncation of this theory space. In the second part we apply it to a specific three-dimensional truncated theory space which is parametrized by Newton's constant, the cosmological constant, and the Immirzi parameter. A comprehensive analysis of their scale dependences is performed, and the possibility of defining an asymptotically safe theory on this hitherto unexplored theory space is investigated. In principle Asymptotic Safety of metric gravity (at least at the level of the effective average action) is neither necessary nor sufficient for Asymptotic Safety on the Einstein-Cartan theory space which might accommodate different universality classes of microscopic quantum gravity theories. Nevertheless, we do find evidence for the existence of at least one non-Gaussian renormalization group fixed point which seems suitable for the Asymptotic Safety construction in a setting where the spin connection and the vielbein are the fundamental field variables. (c) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据