4.5 Article

Effective equilibrium theory of nonequilibrium quantum transport

期刊

ANNALS OF PHYSICS
卷 326, 期 12, 页码 2963-2999

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.aop.2011.07.001

关键词

Nonequilibrium quantum transport; Many-body theory; Anderson model; Schwinger-Keldysh formalism

资金

  1. Department of Energy [DE-FG02-08ER46541]
  2. Yale Center for Quantum Information Physics [NSF DMR-0653377]
  3. NSF [DMR-0907150]
  4. U.S. Department of Energy (DOE) [DE-FG02-08ER46541] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

The theoretical description of strongly correlated quantum systems out of equilibrium presents several challenges and a number of open questions persist. Here, we focus on nonlinear electronic transport through an interacting quantum dot maintained at finite bias using a concept introduced by Hershfield [S. Hershfield, Phys. Rev. Lett. 70 2134 (1993)] whereby one can express such nonequilibrium quantum impurity models in terms of the system's Lippmann-Schwinger operators. These scattering operators allow one to reformulate the nonequilibrium problem as an effective equilibrium problem associated with a modified Hamiltonian. In this paper, we provide a pedagogical analysis of the core concepts of the effective equilibrium theory. First, we demonstrate the equivalence between observables computed using the Schwinger-Keldysh framework and the effective equilibrium approach, and relate Green's functions in the two theoretical frameworks. Second, we expound some applications of this method in the context of interacting quantum impurity models. We introduce a novel framework to treat effects of interactions perturbatively while capturing the entire dependence on the bias voltage. For the sake of concreteness, we employ the Anderson model as a prototype for this scheme. Working at the particle-hole symmetric point, we investigate the fate of the Abrikosov-Suhl resonance as a function of bias voltage and magnetic field. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据