4.5 Article

Outflow boundary conditions for arterial networks with multiple outlets

期刊

ANNALS OF BIOMEDICAL ENGINEERING
卷 36, 期 9, 页码 1496-1514

出版社

SPRINGER
DOI: 10.1007/s10439-008-9527-7

关键词

CFD; arterial tree; high-order methods; parallel computing

向作者/读者索取更多资源

Simulation of blood flow in three-dimensional geometrically complex arterial networks involves many inlets and outlets and requires large-scale parallel computing. It should be based on physiologically correct boundary conditions, which are accurate, robust, and simple to implement in the parallel framework. While a secondary closure problem can be solved to provide approximate outflow conditions, it is preferable, when possible, to impose the clinically measured flow rates. We have developed a new method to incorporate such measurements at multiple outlets, based on a time-dependent resistance boundary condition for the pressure in conjunction with a Neumann boundary condition for the velocity. Convergence of the numerical solution for the specified outlet flow rates is achieved very fast at a computational complexity comparable to the widely used Resistance or Windkessel boundary conditions. The method is verified using a patient-specific cranial vascular network involving 20 arteries and 10 outlets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据