4.4 Article

TRAVELING WAVES OF SELECTIVE SWEEPS

期刊

ANNALS OF APPLIED PROBABILITY
卷 21, 期 2, 页码 699-744

出版社

INST MATHEMATICAL STATISTICS
DOI: 10.1214/10-AAP721

关键词

Moran model; selective sweep; rate of adaptation; stochastic tunneling; branching processes; cancer models

资金

  1. NSF [DMS-07-04996]
  2. NSF RTG [DMS-07-39164]

向作者/读者索取更多资源

The goal of cancer genome sequencing projects is to determine the genetic alterations that cause common cancers. Many malignancies arise during the clonal expansion of a benign tumor which motivates the study of recurrent selective sweeps in an exponentially growing population. To better understand this process, Beerenwinkel et al. [PLoS Comput. Biol. 3 (2007) 2239-2246] consider a Wright-Fisher model in which cells from an exponentially growing population accumulate advantageous mutations. Simulations show a traveling wave in which the time of the first k-fold mutant, T(k), is approximately linear in k and heuristics are used to obtain formulas for ET(k). Here, we consider the analogous problem for the Moran model and prove that as the mutation rate mu -> 0, T(k) similar to c(k) log(1/mu), where the c(k) can be computed explicitly. In addition, we derive a limiting result on a log scale for the size of X(k)(t) = the number of cells with k mutations at time t.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据