4.5 Article

Improved small punch testing and parameter identification of ductile to brittle materials

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijpvp.2014.09.001

关键词

Small punch test; Minimal invasive testing; Parameter identification; Brittle fracture; Cryogenic temperature testing

资金

  1. German Research Foundation (DFG) [Ku 929/11]

向作者/读者索取更多资源

Minimal invasive material testing is of special interest, when only small amounts of material are available or the material degradation of structural components in service has to be evaluated. The disc-shaped specimens used in the small punch test are small enough for local material sampling but representative for characterizing the macroscopic material behaviour. A small punch test device was developed which enables the testing of materials in the whole range from ductile to brittle failure and from ambient temperature down to -190 degrees C in a unique experimental set-up. The specimens are not clamped as usually in the small punch test. This is crucial for brittle fracture behaviour with little or without plastic deformation. The measured load displacement curve of the punch represents the non-linear response of the material due to elastic plastic deformation. It contains relevant information about true material parameters, which can be made accessible by solving the inverse problem. Thus, plastic yield curves and Weibull parameters were identified by combining finite element simulations with non-linear optimization techniques. Examples for measured load displacement curves and related results of parameter identification are shown for a pressure vessel steel and a laser welded joint. The results obtained from the small punch test are verified by data from standard specimen tests. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据