4.8 Article

Antifreezes Act as Catalysts for Methane Hydrate Formation from Ice

期刊

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
卷 53, 期 39, 页码 10429-10433

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.201403638

关键词

gas uptake; hydrates; methanol; molecular dynamics; powder x-ray diffraction

资金

  1. National Research Council of Canada

向作者/读者索取更多资源

Contrary to the thermodynamic inhibiting effect of methanol on methane hydrate formation from aqueous phases, hydrate forms quickly at high yield by exposing frozen water-methanol mixtures with methanol concentrations ranging from 0.6-10 wt% to methane gas at pressures from 125 bars at 253 K. Formation rates are some two orders of magnitude greater than those obtained for samples without methanol and conversion of ice is essentially complete. Ammonia has a similar catalytic effect when used in concentrations of 0.3-.7 wt%. The structure I methane hydrate formed in this manner was characterized by powder X-ray diffraction and Raman spectroscopy. Steps in the possible mechanism of action of methanol were studied with molecular dynamics simulations of the Ih (0001) basal plane exposed to methanol and methane gas. Simulations show that methanol from a surface aqueous layer slowly migrates into the ice lattice. Methane gas is preferentially adsorbed into the aqueous methanol surface layer. Possible consequences of the catalytic methane hydrate formation on hydrate plug formation in gas pipelines, on large scale energy-efficient gas hydrate formation, and in planetary science are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据