4.6 Article

Restoration of calcium influx corrects membrane hyperexcitability in injured rat dorsal root ganglion neurons

期刊

ANESTHESIA AND ANALGESIA
卷 107, 期 3, 页码 1045-1051

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1213/ane.0b013e31817bd1f0

关键词

-

资金

  1. NINDS NIH HHS [R01 NS042150, R01 NS042150-06, NS-42150] Funding Source: Medline

向作者/读者索取更多资源

BACKGROUND: We have previously shown that a decrease of inward Ca(2+) flux (I(Ca)) across the sensory neuron plasmalemma, such as happens after axotomy, increases neuronal excitability. From this, we predicted that increasing I(Ca) in injured neurons should correct their hyperexcitability. METHODS: The influence of increased or decreased I(Ca) upon membrane biophysical variables and excitability was determined during recording from A-type neurons in nondissociated dorsal root ganglia after spinal nerve ligation using an, intracellular recording technique. RESULTS: When the bath Ca(2+) level was increased to promote I(Ca), the after-hyperpolarization was decreased and repetitive firing was suppressed, which also followed amplification of Ca(2+)-activated K(+) current with selective agents NS1619 and NS309. A decreased external bath Ca(2+) concentration had the opposite effects, similar to previous observations in uninjured neurons. CONCLUSIONS: These findings indicate that at least a part of the hyperexcitability of somatic sensory neurons after axotomy is attributable to diminished inward Ca(2+) flux, and that measures to restore I(Ca) may potentially be therapeutic for painful peripheral neuropathy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据