4.8 Article

Polypyrrole Nanotube Embedded Reduced Graphene Oxide Transducer for Field-Effect Transistor-Type H2O2 Biosensor

期刊

ANALYTICAL CHEMISTRY
卷 86, 期 3, 页码 1822-1828

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac403770x

关键词

-

资金

  1. National Research Foundation of Korea (NRF)
  2. Korean government (MEST) [2011-0017125]

向作者/读者索取更多资源

We report a rapid-response and high-sensitivity sensor with specificity toward H2O2 based on a liquid-ion-gated field-effect transistor (FET) using graphene-polypyrrole (PPy) nanotube (NT) composites as the conductive channel. The rGO, PPy, NTs, and nanocomposite materials were characterized using Raman spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). On the basis of these results, a well-organized structure is successfully prepared owing to the specific interactions between the PPy NTs and the rGO sheet. Reliable electrical contacts were developed between the rGO/PPy NTs and the microelectrodes, which remained stable when exposed to the liquid-phase analyte. Liquid-ion-gated FETs composed of these graphene nanocomposites exhibited hole-transport behavior with conductivities higher than those of rGO sheets or PPy NTs. This implies an interaction between the PPy NTs and the rGO layers, which is explained in terms of the PPy NTs forming a bridge between the rGO layers. The FET sensor provided a rapid response in real time and high sensitivity toward H2O2 with a limit of detection of 100 pM. The FET-type biosensing geometry was also highly reproducible and stable in air. Furthermore, the liquid-gated FET-type sensor exhibited specificity toward H2O2 in a mixed solution containing compounds found in biological fluids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据