4.8 Article

Multiple Scan Rate Voltammetry for Selective Quantification of Real-Time Enkephalin Dynamics

期刊

ANALYTICAL CHEMISTRY
卷 86, 期 15, 页码 7806-7812

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac501725u

关键词

-

资金

  1. Department of Chemistry (North Carolina State University)

向作者/读者索取更多资源

Methionine-enkephalin (M-ENK) and leucine-enkephalin (L-ENK) are small endogenous opioid peptides that have been implicated in a wide variety of complex physiological functions, including nociception, reward processing, and motivation. However, our understanding of the role that these molecules play in modulating specific brain circuits remains limited, largely due to challenges in determining where, when, and how specific neuropeptides are released in tissue. Background-subtracted fast-scan cyclic voltammetry coupled with carbon-fiber microelectrodes has proven to be sensitive and selective for detecting rapidly fluctuating neurochemicals in vivo; however, many challenges exist for applying this approach to the detection of neuropeptides. We have developed and characterized a novel voltammetric waveform for the selective quantification of small tyrosine-containing peptides, such as the ENKs, with rapid temporal (subsecond) and precise spatial (10s of micrometers) resolution. We have established that the main contributor to the electrochemical signal inherent to M-ENK is tyrosine and that conventional waveforms provide poor peak resolution and lead to fouling of the electrode surface. By employing two distinct scan rates in each anodic sweep of this analyte-specific waveform, we have selectively distinguished M-ENK from common endogenous interfering agents, such as ascorbic acid, pH shifts, and even L-ENK. Finally, we have used this approach to simultaneously quantify catecholarnine and M-ENK fluctuations in live tissue. This work provides a foundation for real-time measurements of endogenous ENK fluctuations in biological locations, and the underlying concept of using multiple scan rates is adaptable to the voltammetric detection of other tyrosine-containing neuropeptides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据