4.8 Article

ToF-SIMS Depth Profiling of Cells: z-Correction, 3D Imaging, and Sputter Rate of Individual NIH/3T3 Fibroblasts

期刊

ANALYTICAL CHEMISTRY
卷 84, 期 11, 页码 4880-4885

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac300480g

关键词

-

资金

  1. National ESCA and Surface Analysis Center for Biomedical Problems (NESAC/BIO) from the National Institutes of Health [EB-002027]

向作者/读者索取更多资源

Proper display of three-dimensional time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging data of complex, nonflat samples requires a correction of the data in the z-direction. Inaccuracies in displaying three-dimensional ToF-SIMS data arise from projecting data from a nonflat surface onto a 2D image plane, as well as possible variations in the sputter rate of the sample being probed. The current study builds on previous studies by creating software written in Matlab, the ZCorrectorGUI (available at http://mvsa.nb.uw.edu/), to apply the z-correction to entire 3D data sets. Three-dimensional image data sets were acquired from NIH/3T3 fibroblasts by collecting ToF-SIMS images, using a dual beam approach (25 keV Bi-3(+) for analysis cycles and 20 keV C-60(2+) for sputter cycles). The entire data cube was then corrected by using the new ZCorrectorGUI software, producing accurate chemical information from single cells in 3D. For the first time, a three-dimensional corrected view of a lipid-rich subcellular region, possibly the nuclear membrane, is presented. Additionally, the key assumption of a constant sputter rate throughout the data acquisition was tested by using ToF-SIMS and atomic force microscopy (AFM) analysis of the same cells. For the dried NIH/3T3 fibroblasts examined in this study, the sputter rate was found to not change appreciably in x, y, or z, and the cellular material was sputtered at a rate of approximately 10 nm per 1.25 x 10(13) ions C-60(2+)/cm(2).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据