4.8 Article

Imaging Mass Spectrometry of Three-Dimensional Cell Culture Systems

期刊

ANALYTICAL CHEMISTRY
卷 83, 期 22, 页码 8794-8801

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac202356g

关键词

-

资金

  1. University of Notre Dame
  2. Society for Analytical Chemists of Pittsburgh

向作者/读者索取更多资源

Three-dimensional (3D) cell cultures have increased complexity compared to simple monolayer and suspension cultures, recapitulating the cellular architecture and molecular gradients in tissue. As such, they are popular for in vitro models in biological research. Classical imaging methodologies, like immunohistochemistry, are commonly used to examine the distribution of specific species within the spheroids. However, there is a need for an unbiased discovery-based methodology that would allow examination of protein/peptide distributions in 3D culture systems, without a need for prior knowledge of the analytes. We have developed a matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS)-based imaging approach to examine protein distributions in 3D cell culture models. Using colon carcinoma cell lines, we detect changes in the spatial distribution of proteins across 3D culture structures. To identify the protein species present, we are combining results from the MS/MS capabilities of MALDI-MS to sequence peptides in a de novo fashion and nanoflow liquid chromatography-tandem mass spectrometry (nLC-MS/MS) of homogenized cultures. As a proof-of-principle, we have identified cytochrome C and Histone H4 as two of the predominant protein species in the 3D colon carcinoma cultures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据