4.8 Article

Design of Aptamer-Based Sensing Platform Using Triple-Helix Molecular Switch

期刊

ANALYTICAL CHEMISTRY
卷 83, 期 17, 页码 6586-6592

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac201314y

关键词

-

资金

  1. National Natural Science Foundation of China [21075032, 21005026]
  2. Hunan Province Key Project of Scientific & Technical Programs [2010TP4013]
  3. Hunan National Science Foundation [10JJ7002]
  4. PCSIRT
  5. Hunan Province Innovation Foundation

向作者/读者索取更多资源

For successful assay development of an aptamer-based biosensor, various design principles and strategies, including a highly selective molecular recognition element and a novel signal transduction mechanism, have to be engineered together. Herein, we report a new type of aptamer-based sensing platform which is based on a triple-helix molecular switch (THMS). The THMS consists of a central, target specific aptamer sequence flanked by two arm segments and a dual-labeled oligonucleotide serving as a signal transduction probe (STP). The STP is doubly labeled with pyrene at the 5'- and 3'-end, respectively, and initially designed as a hairpin-shaped structure, thus, bringing the two pyrenes into spacer proximity. Bindings of two arm segments of the aptamer with the loop sequence of STP enforce the STP to form an open configuration. Formation of aptamer/target complex releases the STP, leading to new signal readout. To demonstrate the feasibility and universality of our design, three aptamers which bind to human a-thrombin (Tmb), adenosine triphosphate (ATP), and L-argininamide (L-Arm), respectively, were selected as models. The universality of the approach is achieved by virtue of altering the aptamer sequence without change of the triple-helix structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Environmental

The dual effects of ammonium bisulfate on the selective catalytic reduction of NO with NH3 over Fe2O3-WO3 catalyst confined in MCM-41

Kai Guo, Yuxiang Zhu, Zhen Yan, Annai Liu, Xiangze Du, Xin Wang, Wei Tan, Lulu Li, Jingfang Sun, Qing Tong, Changjin Tang, Lin Dong

CHEMICAL ENGINEERING JOURNAL (2020)

Article Engineering, Biomedical

Effects of recipient age, heparin release and allogeneic bone marrow-derived stromal cells on vascular graft remodeling

Richard Johnson, Michael Rafuse, Prakash Parthiban Selvakumar, Wei Tan

Summary: This study evaluated the impacts of allogeneic bone marrow-derived stromal cells and recipient age on the long-term remodeling of vascular grafts. The results showed significant effects of these factors on graft outcomes. Additionally, compared to acellular grafts, cellular grafts showed efficient recruitment of vascular cells to form more organized structures.

ACTA BIOMATERIALIA (2021)

Article Chemistry, Physical

Insight into the SO2 resistance mechanism on γ-Fe2O3 catalyst in NH3-SCR reaction: A collaborated experimental and DFT study

Yaxin Yu, Wei Tan, Dongqi An, Xiuwen Wang, Annai Liu, Weixin Zou, Changjin Tang, Chengyan Ge, Qing Tong, Jingfang Sun, Lin Dong

Summary: Research has shown that SO2 poisoning of NH3-SCR catalysts at low temperature remains a challenge. The formation of sulfate species inhibits the adsorption of NOx, while the formation of ferric sulfate enhances surface acidity, leading to an increase in catalytic activity.

APPLIED CATALYSIS B-ENVIRONMENTAL (2021)

Article Engineering, Environmental

Ce-Si Mixed Oxide: A High Sulfur Resistant Catalyst in the NH3-SCR Reaction through the Mechanism-Enhanced Process

Wei Tan, Annai Liu, Shaohua Xie, Yong Yan, Thomas E. Shaw, Yu Pu, Kai Guo, Lulu Li, Shuohan Yu, Fei Gao, Fudong Liu, Lin Dong

Summary: Investigating catalytic reaction mechanisms can guide catalyst design, as demonstrated by the innovative CeO2-SiO2 mixed oxide catalyst (CeSi2) with excellent SO2/H2O resistance in harsh working conditions. The strong Ce-O-Si interaction and abundant surface hydroxyl groups on CeSi2 provide active acid sites and inhibit SO2 adsorption, enhancing the NH3-SCR performance through an enhanced Eley-Rideal mechanism. This work offers a strategy to develop an environmentally friendly NH3-SCR catalyst with superior SO2 resistance.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2021)

Article Engineering, Environmental

Highly Active and Stable Palladium Catalysts on Novel Ceria-Alumina Supports for Efficient Oxidation of Carbon Monoxide and Hydrocarbons

Shaohua Xie, Zhiwei Wang, Wei Tan, Yatong Zhu, Samantha Collier, Lu Ma, Steven N. Ehrlich, Peng Xu, Yong Yan, Tao Xu, Jiguang Deng, Fudong Liu

Summary: A novel two-step wetness impregnation method was developed to fabricate a unique and highly stable CeO2/Al2O3 support, enabling Pd catalysts anchored on this support to exhibit higher activity and thermal stability in CO and hydrocarbon oxidations. This approach can be applied as a universal method to prepare stable metal oxide-alumina-based supports, with broad applications in environmental catalyst design.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2021)

Article Chemistry, Applied

Molybdenum oxide as an efficient promoter to enhance the NH3-SCR performance of CeO2-SiO2 catalyst for NOx removal

Wei Tan, Jin Wang, Yandi Cai, Lulu Li, Shaohua Xie, Fei Gao, Fudong Liu, Lin Dong

Summary: This study proposes a new strategy of Mo doping to improve the low-temperature SCR activity of CeSi2. A Mo-Ce-Si mixed-oxide catalyst was prepared by a simple co-precipitation method. Mo doping significantly enhances the NH3-SCR activity of CeSi2 and exhibits superior N2 selectivity and resistance to SO2/H2O poisoning.

CATALYSIS TODAY (2022)

Article Chemistry, Multidisciplinary

Solid-phase impregnation promotes Ce doping in TiO2 for boosted denitration of CeO2/TiO2 catalysts

Wang Song, Jiawei Ji, Kai Guo, Xin Wang, Xiaoqian Wei, Yandi Cai, Wei Tan, Lulu Li, Jingfang Sun, Changjin Tang, Lin Dong

Summary: CeO2/TiO2 catalysts prepared by solid-phase impregnation showed better catalytic activity in low-temperature selective catalytic reduction of NOx with NH3. Surface changes of TiO2 were found to have a significant impact on the improved activity.

CHINESE CHEMICAL LETTERS (2022)

Article Engineering, Environmental

Transformation of Highly Stable Pt Single Sites on Defect Engineered Ceria into Robust Pt Clusters for Vehicle Emission Control

Wei Tan, Shaohua Xie, Yandi Cai, Meiyu Wang, Shuohan Yu, Ke-Bin Low, Yuejin Li, Lu Ma, Steven N. Ehrlich, Fei Gao, Lin Dong, Fudong Liu

Summary: This study explores the engineering of surface defects on CeO2 supports through ZrO2 doping to enhance the catalytic performance of Pt/CZO catalysts. Activation by H-2 reduction significantly boosts the catalytic oxidation performance of Pt/CZO catalyst and improves thermal stability, making it superior to Pt/CeO2 in vehicle emission control applications.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2021)

Article Engineering, Environmental

Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NOx removal by NH3-SCR

Wei Tan, Chunying Wang, Shuohan Yu, Yaobin Li, Shaohua Xie, Fei Gao, Lin Dong, Fudong Liu

Summary: The study revealed that the NH3-SCR activity of Nb2O5-CeO2 and WO3-CeO2 catalysts depends significantly on the strong interaction between the redox component (CeO2) and acidic component (Nb2O5 or WO3), as well as the presence of paired redox-acid sites. At lower temperatures (200 degrees Celsius), NH3-SCR activity is primarily influenced by the surface acidity of the catalysts, while at higher NOx conversion rates, the activity is more determined by the redox properties.

JOURNAL OF HAZARDOUS MATERIALS (2021)

Article Chemistry, Applied

Enhancing low-temperature NH3-SCR performance of FeeMn/CeO2 catalyst by Al2O3 modification

Lulu Li, Jiawei Ji, Wei Tan, Wang Song, Xin Wang, Xiaoqian Wei, Kai Guo, Wanyu Zhang, Changjin Tang, Lin Dong

Summary: In this work, a supported catalyst consisting of FeOx and MnOx co-supported on aluminum-modified CeO2 was synthesized and applied in the low-temperature NH3-selective catalytic reduction (NH3-SCR) of NO. The study revealed that the SCR activity of the catalyst was significantly influenced by the amount of added aluminum and the appropriate Ce/Al molar ratio. The Fe-Mn/Ce1Al2 catalyst exhibited over 90% NO conversion at a temperature range of 75-250 degrees Celsius and displayed better resistance to SO2 compared to FeeMn/CeO2.

JOURNAL OF RARE EARTHS (2022)

Article Engineering, Environmental

Highly efficient Pt catalyst on newly designed CeO2-ZrO2-Al2O3 support for catalytic removal of pollutants from vehicle exhaust

Wei Tan, Shaohua Xie, Xin Wang, Chunying Wang, Yaobin Li, Thomas E. Shaw, Lu Ma, Steven N. Ehrlich, Annai Liu, Jiawei Ji, Fei Gao, Lin Dong, Fudong Liu

Summary: The study focuses on the improvement of Pt-CeO2 catalysts by designing new ceria-based supports. Through a unique T-IWI method, a Pt single site catalyst with excellent thermal stability was synthesized on a CZA-T support. The catalyst showed higher oxidation activity and Oxygen storage capacity (OSC) compared to traditional Pt catalysts on regular CeO2/Al2O3 and one-step prepared CeZrOx/Al2O3 supports. The higher Pt dispersion and stronger Pt-O-Ce interaction on the CZA-T support played a vital role in the CO oxidation performance and OSC of the catalyst.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Chemistry, Physical

Copper Single Atom-Triggered Niobia-Ceria Catalyst for Efficient Low-Temperature Reduction of Nitrogen Oxides

Shaohua Xie, Wei Tan, Yuejin Li, Lu Ma, Steven N. Ehrlich, Jiguang Deng, Peng Xu, Fei Gao, Lin Dong, Fudong Liu

Summary: In this study, an efficient NbCuCe oxide catalyst for reducing NOx emissions in cold-start diesel engines is reported. The catalyst exhibits higher DeNO(x) activity below 200 degrees C compared to the Cu-CHA zeolite catalyst, along with superior sulfur resistance, faster response, and lower NH3 slip. Atomically dispersed Cu species facilitate strong interaction between Cu and the Nb/Ce base catalyst, leading to improved low-temperature redox properties and NH3 adsorption/activation. The developed NbCuCe catalyst shows promising potential for efficient DeNO(x) in cold-start diesel engines and can be combined with Cu-CHA for a broader temperature range of operation.

ACS CATALYSIS (2022)

Article Chemistry, Multidisciplinary

Pt Atomic Single-Layer Catalyst Embedded in Defect-Enriched Ceria for Efficient CO Oxidation

Shaohua Xie, Liping Liu, Yu Lu, Chunying Wang, Sufeng Cao, Weijian Diao, Jiguang Deng, Wei Tan, Lu Ma, Steven N. Ehrlich, Yaobin Li, Yan Zhang, Kailong Ye, Hongliang Xin, Maria Flytzani-Stephanopoulos, Fudong Liu

Summary: The local coordination structure of metal sites plays a crucial role in the performance of supported metal catalysts. This study successfully fabricated Pt atomic single-layer structures with precisely controlled local coordination environment, which exhibited higher turnover frequency and improved catalytic activity in CO oxidation. This work provides new insights for achieving 100% atomic utilization efficiency and optimal intrinsic catalytic activity.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2022)

Article Chemistry, Physical

,, Determination of Intrinsic Active Sites on CuO-CeO2-Al2O3 Catalysts for CO Oxidation and NO Reduction by CO: Differences and Connections

Wei Tan, Shaohua Xie, Xin Wang, Juntian Xu, Yong Yan, Kaili Ma, Yandi Cai, Kailong Ye, Fei Gao, Lin Dong, Fudong Liu

Summary: In this study, an efficient CuO catalyst supported on a CeO2-Al2O3 support (CA-T) prepared by two-step incipient wetness impregnation (T-IWI) method was successfully developed. The Cu/CA-T catalyst exhibited better catalytic performance in CO oxidation and NO reduction by CO (NO + CO reaction) as well as higher thermal stability compared to the CuO catalyst loaded on conventional CeO2-Al2O3 support (Cu/CA). The microstructure of CuO-CeO2-Al2O3 catalysts, especially the state of Cu species, was systematically investigated using various characterization techniques. The mechanisms of CO oxidation and NO + CO reactions on Cu/CA and Cu/CA-T catalysts were collaboratively revealed.

ACS CATALYSIS (2022)

Article Chemistry, Multidisciplinary

Fabricating Robust Pt Clusters on Sn-Doped CeO2 for CO Oxidation: A Deep Insight into Support Engineering and Surface Structural Evolution

Qinglong Liu, Peng Yang, Wei Tan, Haowei Yu, Jiawei Ji, Cong Wu, Yandi Cai, Shaohua Xie, Fudong Liu, Song Hong, Kaili Ma, Fei Gao, Lin Dong

Summary: The size effect on nanoparticles plays a crucial role in catalysis performance. Tuning the oxygen vacancies on a metal-oxide support can help reduce the size of Pt particles, thus improving the catalysis performance of the supported catalyst. In this study, Ce-Sn solid solutions (CSO) with abundant oxygen vacancies were synthesized. After CO reduction, the catalytic CO oxidation performance of Pt/CSO was significantly better than that of Pt/CeO2. This improvement was attributed to the creation of smaller Pt clusters on CSO with more exposed active sites.

CHEMISTRY-A EUROPEAN JOURNAL (2023)

暂无数据