4.8 Article

Theory of Midinfrared Absorption Microspectroscopy: I. Homogeneous Samples

期刊

ANALYTICAL CHEMISTRY
卷 82, 期 9, 页码 3474-3486

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac902067p

关键词

-

资金

  1. Grainger Foundation for Emerging Technologies
  2. Department of Defense
  3. Susan G. Komen for the Cure

向作者/读者索取更多资源

Midinfrared (IR) microspectroscopy is widely employed for spatially localized spectral analyses. A comprehensive theoretical model for the technique, however, has not been previously proposed. In this paper, rigorous theory is presented for IR absorption microspectroscopy by using Maxwell's equations to model beam propagation. Focusing effects, material dispersion, and the geometry of the sample are accounted to predict spectral response for homogeneous samples. Predictions are validated experimentally using Fourier transform IR (FT-IR) microspectroscopic examination of a photoresist. The results emphasize that meaningful interpretation of IR microspectroscopic data must involve an understanding of the coupled optical effects associated with the sample, substrate properties, and microscopy configuration. Simulations provide guidance for developing experimental methods and future instrument design by quantifying distortions in the recorded data. Distortions are especially severe for transflection mode and for samples mounted on certain substrates. Last, the model generalizes to rigorously consider the effects of focusing. While spectral analyses range from examining gross spectral features to assessing subtle features using advanced chemometrics, the limitations imposed by these effects in the data acquisition on the information available are less clear. The distorting effects are shown to be larger than noise levels seen in modern spectrometers. Hence, the model provides a framework to quantify spectral distortions that may limit the accuracy of information or present confounding effects in microspectroscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据