4.8 Article

Biomonitoring of Organophosphorus Agent Exposure by Reactivation of Cholinesterase Enzyme Based on Carbon Nanotube-Enhanced Flow-Injection Amperometric Detection

期刊

ANALYTICAL CHEMISTRY
卷 81, 期 22, 页码 9314-9320

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac901673a

关键词

-

资金

  1. CDC/NIOSH [R01 OH008173-01]
  2. National Institute of Neurological Disorders and Stroke, NIH [U01 NS058161-01]
  3. National Natural Science Foundation of China [20705010]
  4. Research Fund for the Doctoral Program of Higher Education of China [20070511015]
  5. DOE [DE-AC05-76RL01830]

向作者/读者索取更多资源

A portable, rapid, and sensitive assessment of subclinical organophosphorus (OP) agent exposure based on reactivation of cholinesterase (ChE) from OP-inhibited ChE using rat saliva (in vitro) was developed using an electrochemical sensor coupled with a microflow-injection system. The sensor was based on a carbon nanotube (CNT)-modified screen printed carbon electrode (SPE), which was integrated into a flow cell. Because of the extent of interindividual ChE activity variability, ChE biomonitoring often requires an initial baseline determination (noninhibited) of enzyme activity which is then directly compared with activity after OP exposure. This manuscript describes an alternative strategy where reactivation of the phosphorylated enzyme was exploited to enable measurement of both inhibited and baseline ChE activity (after reactivation by an oxime, i.e., pralidoxime iodide) in the same sample. The use of CNT makes the electrochemical detection of the products from enzymatic reactions more feasible with extremely high sensitivity (5% ChE inhibition) and selectivity. Paraoxon was selected as a model OP compound for in vitro inhibition studies. Some experimental parameters, e.g., inhibition and reactivation time, have been optimized such that 92-95% of ChE reactivation can be achieved over a broad range of ChE inhibition (5-94%) with paraoxon. The extent of enzyme inhibition using this electrochemical sensor correlates well with conventional enzyme activity measurements. On the basis of the double determinations of enzyme activity, this flow-injection device has been successfully used to detect paraoxon inhibition efficiency in saliva samples (95% of ChE activity is due to butyrylcholinesterase), which demonstrated its promise as a sensitive monitor of OP exposure in biological fluids. Since it excludes inter- or intraindividual variation in the normal levels of ChE, this new CNT-based electrochemical sensor thus provides a sensitive and quantitative tool for point-of-care assessment and noninvasive biomonitoring of the exposure to OP pesticides and chemical nerve agents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据