4.8 Article

Characterization of Colloidal Platinum Nanoparticles by MALDI-TOF Mass Spectrometry

期刊

ANALYTICAL CHEMISTRY
卷 81, 期 15, 页码 6295-6299

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac900309z

关键词

-

资金

  1. U.S. Department of Energy [DE-AC03-76SF00098]

向作者/读者索取更多资源

In this work, matrix assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) has been utilized to characterize colloidal platinum nanoparticles synthesized in the 1-4 nm size range. The nanoparticles were prepared via a solution-based method in which the size could be controlled by varying reaction conditions, such as the alcohol used as the reductant. Poly(vinylpyrrolidone), or PVP, (MW = 29 000 g/mol) was employed as a capping agent to stabilize the synthesized nanoparticles in solution. A model for determining the size of the metallic nanoparticle core from MALDI-TOF mass spectra has been developed and verified through correlation with particle sizes from transmission electron microscopy (TEM) and X ray diffraction (XRD) measurements. In this model it was assumed that 1.85 nm nanoparticles are capped by one PVP chain, which was verified through experiments performed with capped and uncapped nanoparticles. Larger nanoparticles are capped by either two (2.60 and 2.94 nm) or three (3.69 nm) PVP chains. These findings clearly indicate the usefulness of MALDI-TOF MS as a technique for fully characterizing nanoscale materials in order to elucidate structure-property relationships.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据