4.7 Article

Iron organic speciation determination in rainwater using cathodic stripping voltammetry

期刊

ANALYTICA CHIMICA ACTA
卷 736, 期 -, 页码 45-54

出版社

ELSEVIER
DOI: 10.1016/j.aca.2012.05.011

关键词

Iron organic speciation; Natural rainwater; Voltammetry; Iron-complexing natural ligand concentrations; Conditional stability constants

资金

  1. BOA project [ANR-05-BLANC_0153]
  2. GIS-Europole Mer research axis 2 Global Change-Ocean-Marine Ecosystems Interactions
  3. European CoOperation in Science and Technology (COST) Action 735
  4. Natural Environment Research Council [pml010002] Funding Source: researchfish
  5. NERC [pml010002] Funding Source: UKRI

向作者/读者索取更多资源

A sensitive method using Competitive Ligand Exchange-Adsorptive Cathodic Stripping Voltammetry (CLE-ACSV) has been developed to determine for the first time iron (Fe) organic speciation in rainwater over the typical natural range of pH. We have adapted techniques previously developed in other natural waters to rainwater samples, using the competing ligand 1-nitroso-2-naphthol (NN). The blank was equal to 0.17 +/- 0.05 nM (n = 14) and the detection limit (DL) for labile Fe was 0.15 nM which is 10-70 times lower than that of previously published methods. The conditional stability constant for NN under rainwater conditions was calibrated over the pH range 5.52-6.20 through competition with ethylenediaminetetraacetic acid (EDTA). The calculated value of the logarithm of beta'(FE3+(NN)3) increased linearly with increasing pH according to log beta'(FE3+(NN)3) = 2.4 +/- 0.6 x pH + 11.9 +/- 3.5 (salinity =2.9, T= 20 degrees C). The validation of the method was carried out using desferrioxamine mesylate B (DFOB) as a natural model ligand for Fe. Adequate detection windows were defined to detect this class of ligands in rainwater with 40 mu M of NN from pH 5.52 to 6.20. The concentration of Fe-complexing natural ligands was determined for the first time in three unfiltered and one filtered rainwater samples. Organic Fe-complexing ligand concentrations varied from 104.2 +/- 4.1 nM equivalent of Fe(III) to 336.2 +/- 19.0 nM equivalent of Fe(III) and the logarithm of the conditional stability constants, with respect to Fe3+, varied from 21.1 +/- 0.2 to 22.8 +/- 0.3. This method will provide important data for improving our understanding of the role of wet deposition in the biogeochemical cycling of iron. (c) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据