4.6 Review

Nanoparticle-based substrates for surface-enhanced Raman scattering detection of bacterial spores

期刊

ANALYST
卷 137, 期 16, 页码 3601-3608

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2an35448a

关键词

-

资金

  1. National Natural Science Foundation of China [21035001]
  2. '973' National Key Basic Research Program of China [2011CB91100]

向作者/读者索取更多资源

The development of ultrasensitive and rapid methods for the detection of bacterial spores is important for medical diagnostics of infectious diseases. While Surface-Enhanced Raman Spectroscopic (SERS) techniques have been increasingly demonstrated for achieving this goal, a key challenge is the development of sensitive and stable SERS substrates or probes. This Minireview highlights recent progress in exploring metal nanoparticle-based substrates, especially gold nanoparticle-based substrates, for the detection of biomarkers released from bacterial spores. One recent example involves assemblies of gold nanoparticles on a gold substrate for the highly sensitive detection of dipicolinic acid (DPA), a biomarker for bacterial spores such as Bacillus anthracis. This type of substrate exploits a strong SERS effect produced by the particle-particle and particle-substrate plasmonic coupling. It is capable of accurate speciation of the biomarker but also selective detection under various reactive or non-reactive conditions. In the case of detecting Bacillus subtilis spores, the limit of detection is quite comparable (0.1 ppb for DPA, and 1.5 x 10(9) spores per L (or 2.5 x 10(-14) M)) with those obtained using silver nanoparticle-based substrates. Implications of the recent findings for improving the gold nanoparticle-based SERS substrates with ultrahigh sensitivity for the detection of bacterial spores are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据