4.6 Article

Visualization of local electrochemical activity and local nickel ion release on laser-welded NiTi/steel joints using combined alternating current mode and stripping mode SECM

期刊

ANALYST
卷 133, 期 12, 页码 1700-1706

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b804718a

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG)
  2. research program 'Formgedachtnistechnik' [SFB 459-A5, C5]

向作者/读者索取更多资源

Smoothly polished cross-sections of laser-fabricated welds between NiTi shape memory alloy and stainless steel (SS) microwires of approximately the same diameter and, for comparison, between identical stainless steel or NiTi wires have been subjected to local chemical activity and nickel release measurements using scanning electrochemical microscopy (SECM). In the alternating current mode (AC-SECM), the measurements detected clear differences in the local interfacial chemical activity of the passivated weld and the base metals only for the heterogeneous joints of the type NiTi-SS. In this case the local electrochemical acvtivity was lower above the weld material. Subjecting cross-sections of NiTi-SS to stripping mode SECM (SM-SECM), higher Ni(2+) concentrations were measured above the regions of the parental NiTi wire, which correlates well with the results from AC-SECM imaging which showed this region as being less passivated. An energy-dispersive elemental analysis of the specimen in a scanning electron microscope revealed the coexistence of Ti and Cr in the weld mass. Possibly, a joint action of these two metals in terms of protective oxide formation is better for passivation of the weld region than the individual action of one or the other element for passivating the original wires. Better passivation of course led to decreased electrochemical activity of the weld surface. Apparently, AC- and SM-mode SECM imaging were sufficiently sensitive to detect and visualize the impact of the changed surface passivation upon laser welding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据