4.6 Review

The HIF/VHL pathway - From oxygen sensing to innate immunity

出版社

AMER THORACIC SOC
DOI: 10.1165/rcmb.2007-0331TR

关键词

hypoxia-inducible factor; oxygen; neutrophils

向作者/读者索取更多资源

In aerobic organisms, all cells have the capacity to respond to changes in oxygenation through the stabilization and transcriptional activation of hypoxia-inducible factor (HIF). At sites of tissue injury, oxygen delivery to individual cells may be compromised or insufficient due to increased metabolic demands, and it is to these areas that immune cells, including neutrophils, must migrate and operate effectively. In addition to the role of HIF to regulate the adaptive metabolic and survival responses of these cells at sites of reduced oxygenation, more complex interactions between HIF and pro-inflammatory pathways are now emerging. The mechanisms by which HIF modulates pro-inflammatory myeloid cell lifespan and function remain to be fully characterized, but roles for the oxygen-sensing hydroxylase enzymes through direct hydroxylation of NF-kappa B and its repressor protein I kappa B alpha have been suggested. The ability of HIF to modulate cellular glucose utilization is also thought to be important, with the maintenance of intracellular ATP pools linked to enhanced myeloid cell aggregation, motility, invasiveness, and bacterial killing. Additional non-hypoxia-mediated routes to upregulate HIF are also now recognized. In this review we describe the role of HIF in the oxygen-sensing response, and the oxygen-dependent and -independent regulation of myeloid cell function and longevity. Understanding these processes and the role they play in regulating innate immune responses within inflamed sites, both hypoxic and normoxic, may offer new opportunities for therapeutic intervention.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据