4.7 Article

The Compatible Solute Ectoine Protects against Nanoparticle-induced Neutrophilic Lung Inflammation

出版社

AMER THORACIC SOC
DOI: 10.1164/rccm.200812-1911OC

关键词

lung epithelium; mitogen-activated protein kinases; IL-8

资金

  1. Zukunftswettbewerb Ruhrgebiet [005-0507-0018]
  2. Bundesministerium fur Umwelt
  3. Naturschutz und Reaktorsicherheit
  4. Deutsche Forschungsgemeinschaft [SF13 728, GK 1033, GK 1427]

向作者/读者索取更多资源

Rationale Inflammatory reactions of the airways induced by nanoparticles of occupational and environmental origin contribute to organ-specific and systemic human diseases. Because this kind of exposure in modern societies is often unavoidable, a strategy of molecular prevention on an individual level could help to prevent inflammation-derived secondary diseases. Objectives: To test whether the compatible solute ectoine [(S)-2-methyl-1,4,5,6-tetrahydropyrimidine-4-carboxylic acid], which is known to reduce cell stress effects on a molecular level, prevents nanoparticle-induced lung inflammation. Methods: Inflammatory parameters were studied in Fischer 344 rats treated with model carbon nanoparticles. The molecular effects of ectoin on proinflammatory signal transduction were demonstrated in the rat and in the human system using cultured lung epithelial cells. Measurements and Main Results: Ectoine, given with or before the nanoparticles, dose-dependently reduced neutrophil inflammation in the lung. This preventive effect was not observed when lung inflammation was induced by bacterial lipopolysaccharide. Analyses of the underlying mode of action revealed that ectoine acted on lung epithelial cells. Ectoine administration inhibited nanoparticle-induced signaling, which is known to be responsible for proinflammatory reactions in rat lung epithelial cells in vitro as well as in vivo. These findings were corroborated and extended in experiments with cultured human bronchial epithelial cells in which ectoine inhibited nanoparticle-triggered cell signaling and IL-8 induction. Conclusions: Because compatible solutes are compliant natural products without known toxic potential, we propose that this group of substances may be used for the prevention of particle-induced airway inflammation in humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据