4.3 Review

Angiotensin-converting enzyme and the tumor microenvironment: mechanisms beyond angiogenesis

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00544.2012

关键词

angiotensin-converting enzyme; myeloid-derived suppressor cells; macrophage polarization; T regulatory cells; angiogenesis; cancer; tumor immunology

向作者/读者索取更多资源

The renin angiotensin system (RAS) is a network of enzymes and peptides that coalesce primarily on the angiotensin II type 1 receptor (AT(1)R) to induce cell proliferation, angiogenesis, fibrosis, and blood pressure control. Angiotensin-converting enzyme (ACE), the key peptidase of the RAS, is promiscuous in that it cleaves other substrates such as substance P and bradykinin. Accumulating evidence implicates ACE in the pathophysiology of carcinogenesis. While the role of ACE and its peptide network in modulating angiogenesis via the AT(1)R is well documented, its involvement in shaping other aspects of the tumor microenvironment remains largely unknown. Here, we review the role of ACE in modulating the immune compartment of the tumor microenvironment, which encompasses the immunosuppressive, cancer-promoting myeloid-derived suppressor cells, alternatively activated tumor-associated macrophages, and T regulatory cells. We also discuss the potential roles of peptides that accumulate in the setting of chronic ACE inhibitor use, such as bradykinin, substance P, and N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), and how they may undercut the gains of anti-angiogenesis from ACE inhibition. These emerging mechanisms may harmonize the often-conflicting results on the role of ACE inhibitors and ACE polymorphisms in various cancers and call for further investigations into the potential benefit of ACE inhibitors in some neoplasms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据