4.3 Article

Effects of environmental hypoxia on cardiac energy metabolism and performance in tilapia

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00418.2009

关键词

fish; cardiovascular function; adenosine 5 '-triphosphate; lipid; pyruvate dehydrogenase

资金

  1. Natural Sciences and Engineering Research Council (NSERC)
  2. University of British Columbia
  3. Province of British Columbia

向作者/读者索取更多资源

Speers-Roesch B, Sandblom E, Lau GY, Farrell AP, Richards JG. Effects of environmental hypoxia on cardiac energy metabolism and performance in tilapia. Am J Physiol Regul Integr Comp Physiol 298: R104-R119, 2010. First published October 28, 2009; doi:10.1152/ajpregu.00418.2009.-The ability of an animal to depress ATP turnover while maintaining metabolic energy balance is important for survival during hypoxia. In the present study, we investigated the responses of cardiac energy metabolism and performance in the hypoxia-tolerant tilapia (Oreochromis hybrid sp.) during exposure to environmental hypoxia. Exposure to graded hypoxia (>= 92% to 2.5% air saturation over 3.6 +/- 0.2 h) followed by exposure to 5% air saturation for 8 h caused a depression of whole animal oxygen consumption rate that was accompanied by parallel decreases in heart rate, cardiac output, and cardiac power output (CPO, analogous to ATP demand of the heart). These cardiac parameters remained depressed by 50-60% compared with normoxic values throughout the 8-h exposure. During a 24-h exposure to 5% air saturation, cardiac ATP concentration was unchanged compared with normoxia and anaerobic glycolysis contributed to ATP supply as evidenced by considerable accumulation of lactate in the heart and plasma. Reductions in the provision of aerobic substrates were apparent from a large and rapid (in <1 h) decrease in plasma nonesterified fatty acids concentration and a modest decrease in activity of pyruvate dehydrogenase. Depression of cardiac ATP demand via bradycardia and an associated decrease in CPO appears to be an integral component of hypoxia-induced metabolic rate depression in tilapia and likely contributes to hypoxic survival.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据