4.3 Article

Mild chronic hypoxemia modifies expression of brain stem angiotensin peptide receptors and reflex responses in fetal sheep

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00023.2009

关键词

fetus; hypoxemia; baroreflex

资金

  1. National Institutes of Health [HD-37885, HD-047584, HL-51952]
  2. Wake Forest University School of Medicine Venture Fund

向作者/读者索取更多资源

Pulgar VM, Hong JK, Jessup JA, Massmann AG, Diz DI, Figueroa JP. Mild chronic hypoxemia modifies expression of brain stem angiotensin peptide receptors and reflex responses in fetal sheep. Am J Physiol Regul Integr Comp Physiol 297: R446-R452, 2009. First published June 10, 2009; doi:10.1152/ajpregu.00023.2009.-The effects of chronic mild hypoxemia on the binding of angiotensin receptors in selected brain stem nuclei and reflex responses were studied in fetal sheep. Fetal and maternal catheters were placed at 120 days' gestation, and animals received intratracheal maternal administration of nitrogen (n=16) or compressed air in controls (n=19). Nitrogen infusion was adjusted to reduce fetal brachial artery PO2 by 25% during 5 days. Spontaneous baroreflex sensitivity and spectral analysis of the pulse interval were analyzed during the 5 days hypoxemia period using 90 min of daily recording. Brains of control and hypoxemic animals were collected, and brain stem angiotensin receptor binding was studied by in vitro autoradiography at 130 days of gestation. After 5 days of hypoxemia, some animals in each group were submitted to one complete umbilical cord occlusion during 5 min. [I-125] sarthran binding showed that chronic mild hypoxemia significantly increases angiotensin type 1 receptor, angiotensin type 2 receptor, and ANG-(1-7) angiotensin receptor binding sites in the nucleus tractus solitarius and dorsal motor nucleus of the vagus (P<0.05). Hypoxemia induced lower baroreflex sensitivity and a higher low frequency-to-high frequency ratio in the fetus, consistent with a shift from vagal to sympathetic autonomic cardiac regulation. Cord occlusion to elicit a chemoreflex response induced a greater bradycardic response in hypoxemic fetuses (slope of the initial fall in heart rate; 11.3 +/- 1.9 vs. 6.4 +/- 1.2 beats.min(-1).s(-1), P<0.05). In summary, chronic mild hypoxemia increased binding of angiotensin receptors in brain stem nuclei, decreased spontaneous baroreflex gain, and increased chemoreflex responses to asphyxia in the fetus. These results suggest hypoxemia-induced alterations in brain stem mechanisms for cardiovascular control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据