4.3 Article

Adaptive responses to creatine loading and exercise in fast-twitch rat skeletal muscle

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00631.2007

关键词

fiber type transitions; myosin heavy chain; Ca2+-ATPase; SERCA; parvalbumin

向作者/读者索取更多资源

We investigated the effects of chronic creatine loading and voluntary running (Run) on muscle fiber types, proteins that regulate intracellular Ca2+, and the metabolic profile in rat plantaris muscle to ascertain the bases for our previous observations that creatine loading results in a higher proportion of myosin heavy chain (MHC) IIb, without corresponding changes in contractile properties. Forty Sprague-Dawley rats were assigned to one of four groups: creatine-fed sedentary, creatine-fed run-trained, control-fed sedentary, and control-fed run-trained animals. Proportion and cross-sectional area increased 10% and 15% in type IIb fibers and the proportion of type IIa fibers decreased 11% in the creatine-fed run-trained compared with the control-fed run-trained group (P < 0.03). No differences were observed in fast Ca2+ -ATPase isoform SERCA1 content (P > 0.49). Creatine feeding alone induced a 41% increase (P < 0.03) in slow Ca2+ -ATPase (SERCA2) content, which was further elevated by 33% with running (P < 0.02). Run training alone reduced parvalbumin content by 50% (P < 0.05). By comparison, parvalbumin content was dramatically decreased by 75% (P < 0.01) by creatine feeding alone but was not further reduced by run training. These adaptive changes indicate that elevating the capacity for high-energy phosphate shuttling, through creatine loading, alleviates the need for intracellular Ca2+ buffering by parvalbumin and increases the efficiency of Ca2+ uptake by SERCAs. Citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities were elevated by run training (P < 0.003) but not by run training + creatine feeding. This indicates that creatine loading during run training supports a faster muscle phenotype that is adequately supported by the existing glycolytic potential, without changes in the capacity for terminal substrate oxidation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据