4.6 Article

Thrombospondin-1 modulates VEGF-A-mediated Akt signaling and capillary survival in the developing retina

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.01246.2008

关键词

vascular endothelial growth factor

资金

  1. National Institutes of Health [HL-71049, CA-092644]
  2. NATIONAL CANCER INSTITUTE [P01CA092644] Funding Source: NIH RePORTER
  3. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL071049] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Sun J, Hopkins BD, Tsujikawa K, Perruzzi C, Adini I, Swerlick R, Bornstein P, Lawler J, Benjamin LE. Thrombospondin-1 modulates VEGF-A-mediated Akt signaling and capillary survival in the developing retina. Am J Physiol Heart Circ Physiol 296: H1344-H1351, 2009. First published March 20, 2009; doi:10.1152/ajpheart.01246.2008.-Microvascular development is often perceived to result from a balance of positive and negative factors that impact signaling for proliferation and survival. The survival signaling that results from hypoxia-induced VEGF-A has been well established, but the factors that antagonize this signaling have been poorly studied. As endogenous inhibitors of angiogenesis, thrombospondins (TSPs) are likely candidates to affect survival signaling. Here we report that TSP1 antagonized microvascular survival to retinal hyperoxia, and Akt signaling in both the retina and in cultured endothelial cells. TSP1 expression is correlated with the association of the CD36 receptor with Src versus Fyn. In the presence of TSP1, CD36 is coprecipitated with Fyn as previously shown by others. However, in the absence of TSP1, there is a preferential association with Src. We now demonstrate that these Src family kinases play an important role in modulating microvascular survival in response to TSP1 by crossing tsp1(-/-) mice to the src(-/-) and fyn(-/-) mice and testing the survival of retinal blood vessels in hyperoxia. We find that tsp1(-/-), fyn(-/-), and double-mutant tsp1(-/-)/fyn(-/-) mice have a similar enhancement of capillary survival in oxygen, whereas in a tsp(-/-) background, the loss of only one allele of src restores the balance in survival and apoptosis to that of wild-type mice. Taken together, we hypothesize that TSP1 antagonizes VEGF-driven Akt survival signaling in part through the recruitment of Fyn to membrane domains containing CD36, but when TSP1 is absent, an opposing Src recruitment contributes to VEGF-driven Akt phosphorylation and capillary survival.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据