4.6 Article

Critical role of interleukin-17A in murine intestinal ischemia-reperfusion injury

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00201.2012

关键词

apoptosis; inflammation; necrosis; Paneth cells; remote organ injury; ischemia-reperfusion

资金

  1. Department of Anesthesiology, Columbia University

向作者/读者索取更多资源

Critical role of interleukin-17A in murine intestinal ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 304: G12-G25, 2013. First published November 1, 2012; doi: 10.1152/ajpgi.00201.2012.-Intestinal ischemia-reperfusion (I/R) injury causes severe illness frequently complicated by remote multiorgan dysfunction and sepsis. Recent studies implicated interleukin-17A (IL-17A) in regulating inflammation, autoimmunity, and I/R injury. Here, we determined whether IL-17A is critical for generation of intestinal I/R injury and subsequent liver and kidney injury. Mice subjected to 30 min of superior mesenteric artery ischemia not only developed severe small intestinal injury (necrosis, apoptosis, and neutrophil infiltration) but also developed significant renal and hepatic injury. We detected large increases in IL-17A in the small intestine, liver, and plasma. IL-17A is critical for generating these injuries, since genetic deletion of IL-17A- or IL-17A-neutralizing antibody treatment markedly protected against intestinal I/R injury and subsequent liver and kidney dysfunction. Intestinal I/R caused greater increases in portal plasma and small intestine IL-17A, suggesting an intestinal source for IL-17A generation. We also observed that intestinal I/R caused rapid small intestinal Paneth cell degranulation and induced murine alpha-defensin cryptdin-1 expression. Furthermore, genetic or pharmacological depletion of Paneth cells significantly attenuated the intestinal I/R injury as well as hepatic and renal dysfunction. Finally, Paneth cell depletion significantly decreased small intestinal, hepatic, and plasma IL-17A levels after intestinal I/R. Taken together, we propose that Paneth cell-derived IL-17A may play a critical role in intestinal I/R injury as well as extraintestinal organ dysfunction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据