4.6 Article

Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1-/- mice fed low levels of cholic acid

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00111.2012

关键词

bile acid synthesis and transport; bile acid excretion; cholesterol synthesis and transport; small intestine; liver

资金

  1. National Institutes of Health [HL-09610, HL-20948, DK-078592]
  2. Moss Heart Fund

向作者/读者索取更多资源

Jones RD, Repa JJ, Russell DW, Dietschy JM, Turley SD. Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1(-/-) mice fed low levels of cholic acid. Am J Physiol Gastrointest Liver Physiol 303: G263-G274, 2012. First published May 24, 2012; doi: 10.1152/ajpgi. 00111.2012.-Cholesterol 7 alpha-hydroxylase (CYP7A1) is the initiating and rate-limiting enzyme in the neutral pathway that coverts cholesterol to primary bile acids (BA). CYP7A1-deficient (Cyp7a1(-/-)) mice have a depleted BA pool, diminished intestinal cholesterol absorption, accelerated fecal sterol loss, and increased intestinal cholesterol synthesis. To determine the molecular and physiological effects of restoring the BA pool in this model, adult female Cyp7a1(-/-) mice and matching Cyp7a1(+/+) controls were fed diets containing cholic acid (CA) at modest levels [0.015, 0.030, and 0.060% (wt/wt)] for 15-18 days. A level of just 0.03% provided a CA intake of similar to 12 mu mol (4.8 mg) per day per 100 g body wt and was sufficient in the Cyp7a1(-/-) mice to normalize BA pool size, fecal BA excretion, fractional cholesterol absorption, and fecal sterol excretion but caused a significant rise in the cholesterol concentration in the small intestine and liver, as well as a marked inhibition of cholesterol synthesis in these organs. In parallel with these metabolic changes, there were marked shifts in intestinal and hepatic expression levels for many target genes of the BA sensor farnesoid X receptor, as well as genes involved in cholesterol transport, especially ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG8. In Cyp7a1(+/+) mice, this level of CA supplementation did not significantly disrupt BA or cholesterol metabolism, except for an increase in fecal BA excretion and marginal changes in mRNA expression for some BA synthetic enzymes. These findings underscore the importance of using moderate dietary BA levels in studies with animal models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据