4.6 Article

Effect of acute exercise on glycogen synthase in muscle from obese and diabetic subjects

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00658.2011

关键词

insulin resistance

资金

  1. American Diabetes Association
  2. National Institutes of Health [AG-030979, DK-80157, DK-089229, DK-24092]
  3. San Antonio Nathan Shock Center
  4. South Texas Health Research Center
  5. US Department of Veterans Affairs
  6. Novo Nordisk Foundation
  7. United Kingdom (UK) Medical Research Council
  8. Diabetes UK
  9. Dundee and District of Diabetes UK Volunteer Group
  10. MRC [MC_U127088492] Funding Source: UKRI
  11. Diabetes UK [07/0003529] Funding Source: researchfish
  12. Medical Research Council [MC_U127088492] Funding Source: researchfish

向作者/读者索取更多资源

Jensen J, Tantiwong P, Stuenaes JT, Molina-Carrion M, DeFronzo RA, Sakamoto K, Musi N. Effect of acute exercise on glycogen synthase in muscle from obese and diabetic subjects. Am J Physiol Endocrinol Metab 303: E82-E89, 2012. First published April 17, 2012; doi: 10.1152/ajpendo.00658.2011.-Insulin stimulates glycogen synthase (GS) through dephosphorylation of serine residues, and this effect is impaired in skeletal muscle from insulin-resistant [obese and type 2 diabetic (T2DM)] subjects. Exercise also increases GS activity, yet it is not known whether the ability of exercise to affect GS is impaired in insulin-resistant subjects. The objective of this study was to examine the effect of acute exercise on GS phosphorylation and enzyme kinetic properties in muscle from insulin-resistant individuals. Lean normal glucose-tolerant (NGT), obese NGT, and obese T2DM subjects performed 40 min of moderate-intensity cycle exercise (70% of Vo(2max)). GS kinetic properties and phosphorylation were measured in vastus lateralis muscle before exercise, immediately after exercise, and 3.5 h postexercise. In lean subjects, GS fractional activity increased twofold after 40 min of exercise, and it remained elevated after the 3.5-h rest period. Importantly, exercise also decreased GS K-m for UDP-glucose from approximate to 0.5 to approximate to 0.2 mM. In lean subjects, exercise caused significant dephosphorylation of GS by 50-70% (Ser(641), Ser(645), and Ser(645,649,653,657)), and phosphorylation of these sites remained decreased after 3.5 h; Ser(7) phosphorylation was not regulated by exercise. In obese NGT and T2DM subjects, exercise increased GS fractional activity, decreased K-m for UDP-glucose, and decreased GS phosphorylation as effectively as in lean NGT subjects. We conclude that the molecular regulatory process by which exercise promotes glycogen synthesis in muscle is preserved in insulin-resistant subjects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据