4.6 Article

Molecular characterization of skeletal muscle atrophy in the R6/2 mouse model of Huntington's disease

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00630.2010

关键词

mammalian target of rapamycin; protein synthesis; proteolysis; autophagy; apoptosis

资金

  1. National Institutes of Health [DK-062880, GM-38032]
  2. CHDI Management, Inc. (Early Discovery Initiative)

向作者/读者索取更多资源

She P, Zhang Z, Marchionini D, Diaz WC, Jetton TJ, Kimball SR, Vary TC, Lang CH, Lynch CJ. Molecular characterization of skeletal muscle atrophy in the R6/2 mouse model of Huntington's disease. Am J Physiol Endocrinol Metab 301: E49-E61, 2011. First published April 19, 2011; doi: 10.1152/ajpendo.00630.2010.-Huntington's disease (HD), a neurodegenerative disorder caused by mutant huntingtin, is characterized by a catabolic phenotype. To determine the mechanisms underlying muscle wasting, we examined key signal transduction pathways governing muscle protein metabolism, apoptosis, and autophagy in R6/2 mice, a well-characterized transgenic model of HD. R6/2 mice exhibited increased adiposity, elevated energy expenditure, and decreased body weight and lean mass without altered food intake. Severe skeletal muscle wasting accounted for a majority of the weight loss. Protein synthesis was unexpectedly increased 19% in gastrocnemius muscle, which was associated with overactivation of basal and refeeding-stimulated mammalian target of rapamycin (mTOR) signaling, elevated Akt expression and Ser(473) phosphorylation, and decreased AMPK Thr(172) phosphorylation. Moreover, mRNA abundance of atrogenes muscle ring finger-1 and atrophy F-box, was markedly attenuated during fasting and refeeding, and the urinary excretion of 3-methylhistidine was decreased, arguing against a role for the ubiquitin proteasome-mediated proteolysis in the atrophy. In contrast, mRNA expression of several caspase genes and genes involved in the extrinsic or intrinsic apoptotic pathway, caspase-3/7, -8, and -9 activity, protein abundance of caspase-3 and -9, Fas, and Fadd, and cytochrome c release were elevated. Protein expressions of LC3B-I and -II, beclin-I, and atg5 and -7 in muscle were upregulated. Thus, mutant huntingtin in skeletal muscle results in increased protein synthesis and mTOR signaling, which is countered by activation of the apoptotic and autophagic pathways, contributing to an overall catabolic phenotype and the severe muscle wasting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据