4.7 Article

NLRP3 deletion protects from hyperoxia-induced acute lung injury

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
卷 305, 期 2, 页码 C182-C189

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00086.2013

关键词

hyperoxia; inflammation; injury; lung; reactive oxygen species

资金

  1. American Heart Association National Scientist Development Grant [09SDG2260957]
  2. National Heart, Lung, and Blood Institute Grant [R01-HL-105932]
  3. Joy McCann Culverhouse Endowment

向作者/读者索取更多资源

Inspiration of a high concentration of oxygen, a therapy for acute lung injury (ALI), could unexpectedly lead to reactive oxygen species (ROS) production and hyperoxia-induced acute lung injury (HALI). Nucleotide-binding domain and leucine-rich repeat PYD-containing protein 3 (NLRP3) senses the ROS, triggering inflammasome activation and interleukin-1 beta (IL-1 beta) production and secretion. However, the role of NLRP3 inflammasome in HALI is unclear. The main aim of this study is to determine the effect of NLRP3 gene deletion on inflammatory response and lung epithelial cell death. Wild-type (WT) and NLRP3(-/-) mice were exposed to 100% O-2 for 48-72 h. Bronchoalveolar lavage fluid and lung tissues were examined for proinflammatory cytokine production and lung inflammation. Hyperoxia-induced lung pathological score was suppressed in NLRP3(-/-) mice compared with WT mice. Hyperoxia-induced recruitment of inflammatory cells and elevation of IL-1 beta, TNF alpha, macrophage inflammatory protein-2, and monocyte chemoattractant protein-1 were attenuated in NLRP3(-/-) mice. NLRP3 deletion decreased lung epithelial cell death and caspase-3 levels and a suppressed NF-kappa B levels compared with WT controls. Taken together, this research demonstrates for the first time that NLRP3-deficient mice have suppressed inflammatory response and blunted lung epithelial cell apoptosis to HALI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据