4.6 Article

A localized contour tree method for deriving geometric and topological properties of complex surface depressions based on high-resolution topographical data

期刊

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/13658816.2015.1038719

关键词

depressions; contour tree; pour contour; topology; geometric properties; LiDAR

资金

  1. Directorate For Geosciences
  2. Office of Polar Programs (OPP) [1107792] Funding Source: National Science Foundation

向作者/读者索取更多资源

Surface depressions are abundant in topographically complex landscapes, and they exert significant influences on hydrological, ecological, and biogeochemical processes at local and regional scales. The increasing availability of high-resolution topographical data makes it possible to resolve small surface depressions. By analogy with the reasoning process of a human interpreter to visually recognize surface depressions from a topographic map, we developed a localized contour tree method that is able to fully exploit high-resolution topographical data for detecting, delineating, and characterizing surface depressions across scales with a multitude of geometric and topological properties. In this research, we introduce a new concept pour contour' and a graph theory-based contour tree representation for the first time to tackle the surface depression detection and delineation problem. Beyond the depression detection and filling addressed in the previous raster-based methods, our localized contour tree method derives the location, perimeter, surface area, depth, spill elevation, storage volume, shape index, and other geometric properties for all individual surface depressions, as well as the nested topological structures for complex surface depressions. The combination of various geometric properties and nested topological descriptions provides comprehensive and essential information about surface depressions across scales for various environmental applications, such as fine-scale ecohydrological modeling, limnological analyses, and wetland studies. Our application example demonstrated that our localized contour tree method is functionally effective and computationally efficient.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据