4.0 Article

BicPAM: Pattern-based biclustering for biomedical data analysis

期刊

ALGORITHMS FOR MOLECULAR BIOLOGY
卷 9, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s13015-014-0027-z

关键词

Biclustering; Pattern mining; Biomedical data analysis

资金

  1. Fundacao para a Ciencia e a Tecnologia (FCT) [Pest-OE/EEI/LA0021/2013]
  2. DataStorm [EXCL/EEI-ESS/0257/2012]
  3. [SFRH/BD/75924/2011]
  4. Fundação para a Ciência e a Tecnologia [SFRH/BD/75924/2011] Funding Source: FCT

向作者/读者索取更多资源

Background: Biclustering, the discovery of sets of objects with a coherent pattern across a subset of conditions, is a critical task to study a wide-set of biomedical problems, where molecular units or patients are meaningfully related with a set of properties. The challenging combinatorial nature of this task led to the development of approaches with restrictions on the allowed type, number and quality of biclusters. Contrasting, recent biclustering approaches relying on pattern mining methods can exhaustively discover flexible structures of robust biclusters. However, these approaches are only prepared to discover constant biclusters and their underlying contributions remain dispersed. Methods: The proposed BicPAM biclustering approach integrates existing principles made available by state-of-the-art pattern-based approaches with two new contributions. First, BicPAM is the first efficient attempt to exhaustively mine non-constant types of biclusters, including additive and multiplicative coherencies in the presence or absence of symmetries. Second, BicPAM provides strategies to effectively compose different biclustering structures and to handle arbitrary levels of noise inherent to data and with discretization procedures. Results: Results show BicPAM's superiority against its peers and its ability to retrieve unique types of biclusters of interest, to efficiently deliver exhaustive solutions and to successfully recover planted biclusters in datasets with varying levels of missing values and noise. Its application over gene expression data leads to unique solutions with heightened biological relevance. Conclusions: BicPAM approaches integrate existing disperse efforts towards pattern-based biclustering and provides the first critical strategies to efficiently discover exhaustive solutions of biclusters with shifting, scaling and symmetric assumptions with varying quality and underlying structures. Additionally, BicPAM dynamically adapts its behavior to mine data with different levels of missing values and noise.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据