4.2 Article

Activation of the Epithelial-to-Mesenchymal Transition Factor Snail Mediated Acetaldehyde-Induced Intestinal Epithelial Barrier Disruption

期刊

出版社

WILEY
DOI: 10.1111/acer.12234

关键词

Acetaldehyde; Reactive Oxygen Species; Permeability; Snail; Caco-2; Monolayer

资金

  1. Top Institute Food and Nutrition

向作者/读者索取更多资源

BackgroundAcetaldehyde (AcH) is mutagenic and can reach high concentrations in colonic lumen after ethanol consumption and is associated with intestinal barrier dysfunction and an increased risk of progressive cancers, including colorectal carcinoma. Snail, the transcription factor of epithelial-mesenchymal transition, is known to down-regulate expression of tight junction (TJ) and adherens junction (AJ) proteins, resulting in loss of epithelial integrity, cancer progression, and metastases. As AcH is mutagenic, the role of Snail in the AcH-induced disruption of intestinal epithelial TJs deserves further investigation. Our aim was to investigate the role of oxidative stress and Snail activation in AcH-induced barrier disruption in Caco-2 monolayers. MethodsThe monolayers were exposed from the apical side to AcHL-cysteine. Reactive oxygen species (ROS) generation and Snail activation were assessed by ELISA and immunofluorescence. Paracellular permeability, localization, and expression of ZO-1, occludin, E-cadherin, and -catenin were examined using transepithelial electrical resistance (TEER), fluorescein isothiocyanate-labeled dextran 4 kDa (FITC-D4), immunofluorescence, and ELISA, respectively. Involvement of Snail was further addressed by inhibiting Snail using small interfering RNA (siRNA). ResultsExposure to 25M AcH increased ROS generation and ROS-dependently induced Snail phosphorylation. In addition, AcH increased paracellular permeability (decrease in TEER and increase in FITC-D4 permeation) in association with redistribution and decrease of TJ and AJ protein levels, which could be attenuated by L-cysteine. Knockdown of Snail by siRNA attenuated the AcH-induced redistribution and decrease in the TJ and AJ proteins, in association with improvement of the barrier function. ConclusionsOur data demonstrate that oxidative stress-mediated Snail phosphorylation is likely a novel mechanism contributing to the deleterious effects of AcH on the TJ and AJ, and intestinal barrier function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据