4.7 Article

Elevated CO2 alters grain quality of two bread wheat cultivars grown under different environmental conditions

期刊

AGRICULTURE ECOSYSTEMS & ENVIRONMENT
卷 185, 期 -, 页码 24-33

出版社

ELSEVIER
DOI: 10.1016/j.agee.2013.11.023

关键词

Elevated CO2; Grain protein; Grain minerals; Dough rheological properties; Bread quality

资金

  1. Grains Research and Development Corporation
  2. Australian Commonwealth Department of Agriculture, Fisheries and Forestry (DAFF)
  3. Melbourne International Research Scholarship
  4. Melbourne International Fee Remission Scholarship

向作者/读者索取更多资源

Bread wheat (Triticum aestivum L cv. Yitpi and cv. Janz) was grown under field conditions in the Australian Grains Free-Air CO2 Enrichment (AGFACE) facility. Ambient [CO2] (a[CO2], similar to 384 mu mol mol(-1)) and elevated [CO2] (e[CO2], similar to 550 mu mol mol(-1)) were combined with two soil water levels (rain-fed and irrigated) and two times of sowing (TOS) in three consecutive years to provide six environments (2007-TOS1, 2007-TOS2, 2008-TOS1, 2008-TOS2, 2009-TOS1, 2009-TOS2). Grain samples were assessed for a range of physical, nutritional and dough rheological properties. The effect of e[CO2] on thousand grain weight (TGW) was significantly different in each growing environment: TGW was significantly increased under e[CO2] only at 2007-TOS2 (by 5%), 2009-TOS1 (by 5%) and 2009-TOS2 (by 15%) but not significantly changed under other conditions. The magnitude of reduction of grain protein concentration at e[CO2] differed among the growing environments but was highly correlated with the percentage yield stimulation under e[CO2] (r(2) = 0.91) suggesting that grain protein concentration under e[CO2] was diluted by increased yield. Across all treatments, grain nutrient concentration was significantly reduced by e[CO2] for Fe (3.9%, 6.2%), Cu (2.2%, 3.4%), Zn (5.9%, 5.7%), Ca (5.6%, 7.3%), Mg (5.6%, 5.8%), Na (21.2%, 30.4%), S (4.4%, 4.4%), P (4.1%, 3.2%) in cv. Yitpi and Janz, respectively. Effects of e[CO2] on grain Zn, Mg and Na concentrations were dependent on the growing environment. Relative reduction of grain S, Fe, Mg, Zn, P at e[CO2] were significantly correlated with grain yield stimulation at e[CO2]. Reductions of these nutrients under e[CO2] were not fully explained by biomass dilution as the relationships differed for each nutrient. Under e[CO2], flour yield of cv. Janz was increased but that of cv. Yitpi was not changed. Even though grain protein concentrations of both cultivars were similar at e[CO2], bread volume as inferred indirectly by dough rheology parameters was 12% greater for cv. Janz (185 +/- 5 cm(3)) than cv. Yitpi (162 +/- 4 cm(3)) at e[CO2]. This disparity may be related to the compositional changes in wheat flour protein at e[CO2], suggesting that future breeding and adaptation strategies to improve the grain quality under e[CO2] should consider the prevailing hydro-thermal conditions. (C) 2013 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据