4.7 Article

Weather-driven changes in population density determine wing dimorphism in a bush-cricket species

期刊

AGRICULTURE ECOSYSTEMS & ENVIRONMENT
卷 145, 期 1, 页码 5-9

出版社

ELSEVIER
DOI: 10.1016/j.agee.2010.10.006

关键词

Abundance; Crowding; Macroptery; Mesoclimate; Orthoptera; Temperature

资金

  1. Akademie fur okologische Landeserforschung e.V.

向作者/读者索取更多资源

Long-winged (macropterous) individuals that are capable of flight in predominantly short-winged (flightless) species can considerably affect population dynamics and range expansion. Understanding the triggers that determine macropterism is crucial for understanding whether the dispersal ability of species allows them to shift their distributions through fragmented landscapes or in response to climate change. From 2002 to 2009, we studied population densities and wing dimorphism (macroptery) of Metrioptera roeselii, on 62 plots in central Germany. In the first step, we used a generalized linear mixed-effects model to assess the variables that influence macroptery. Macroptery rates are strongly positively correlated with bush-cricket abundance and not with vegetation structure and habitat moisture. Populations with macropters had significantly higher densities than those without. In the second step, we analysed the relationship between population densities and several mesoclimate/weather parameters. Densities were positively correlated with warm and dry weather conditions during hatching time in April, and previous year weather is less important than present year weather. In the light of the ongoing range expansion of M. roeselii in large parts of Europe, our results support the hypothesis that at high latitudes macropterism and range expansion are indirectly caused by weather-driven changes in population densities. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据