4.5 Article

Characterization of Thermal Barrier Coatings Produced by Various Thermal Spray Techniques Using Solid Powder, Suspension, and Solution Precursor Feedstock Material

期刊

出版社

WILEY
DOI: 10.1111/ijac.12472

关键词

-

向作者/读者索取更多资源

Use of a liquid feedstock in thermal spraying (an alternative to the conventional solid powder feedstock) is receiving an increasing level of interest due to its capability to produce the advanced submicrometer/nanostructured coatings. Suspension plasma spraying (SPS) and solution precursor plasma spraying (SPPS) are those advanced thermal spraying techniques which help to feed this liquid feedstock. These techniques have shown to produce better performance thermal barrier coatings (TBCs) than conventional thermal spraying. In this work, a comparative study was performed between SPS- and SPPS-sprayed TBCs which then were also compared with the conventional atmospheric plasma-sprayed (APS) TBCs. Experimental characterization included SEM, porosity analysis using weight difference by water infiltration, thermal conductivity measurements using laser flash analysis, and lifetime assessment using thermo-cyclic fatigue test. It was concluded that SPS coatings can produce a microstructure with columnar type features (intermediary between the columnar and vertically cracked microstructure), whereas SPPS can produce vertically cracked microstructure. It was also shown that SPS coatings with particle size in suspension (D-50) <3m were highly porous with lower thermal conductivity than SPPS and APS coatings. Furthermore, SPS coatings have also shown a relatively better thermal cyclic fatigue lifetime than SPPS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据