4.7 Article

Estimating the actual transpiration rate with compensated levels of accumulated radiation for the efficient irrigation of soilless cultures of paprika plants

期刊

AGRICULTURAL WATER MANAGEMENT
卷 135, 期 -, 页码 9-18

出版社

ELSEVIER
DOI: 10.1016/j.agwat.2013.12.009

关键词

Accumulated radiation; Efficient irrigation; Transpiration rate; Water management; Water use efficiency

资金

  1. Korea Institute of Planning and Evaluation for Technology of Food, Agriculture, Forestry and Fisheries

向作者/读者索取更多资源

Water management directly affects the productivity of paprika plants and is currently determined based on accumulated radiation levels. However, the amount of water used by the plants, which can be determined by their transpiration rates, does not always increase proportionally to the accumulated radiation levels, depending on the region and climate as well as crop growth stages and development. This effect is observed because the transpiration rate is also related to light intensity, which varies with the time of day and season. To develop a more efficient irrigation strategy, both factors should be analyzed based on the relationship between light intensity and transpiration rate in the short-term. In this study, a sigmoidal relationship between light intensity and transpiration rate at an interval of 10 min was observed using a consecutive transpiration monitoring system. From this relationship, a compensated equation that can calibrate the light intensity was developed. When a modified irrigation was applied using this compensated equation, less water was used compared to a conventional irrigation that supplies water proportional to accumulated radiation, especially in summer. Moreover, there were no significant differences in the transpiration rates and plant growth between plants watered with either the conventional or modified with compensated equation irrigation method. From these results, it was concluded that water was used more efficiently with the modified irrigation method without affecting plant growth. In a region with a high solar radiation in summer, such as Korea, using our equation to calculate for light intensity can prevent water waste, resulting in energy-saving and a reduction of environmental pollution in open-loop soilless cultures. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据