4.7 Article

Deletion of the major peroxiredoxin Tsa1 alters telomere length homeostasis

期刊

AGING CELL
卷 12, 期 4, 页码 635-644

出版社

WILEY
DOI: 10.1111/acel.12085

关键词

peroxiredoxin; reactive oxygen species; telomerase; telomere length

资金

  1. Intramural Research Program of the NIA, National Institutes of Health

向作者/读者索取更多资源

Reactive oxygen species (ROS) are proposed to play a major role in telomere length alterations during aging. The mechanisms by which ROS disrupt telomeres remain unclear. In Saccharomyces cerevisiae, telomere DNA consists of TG((1-3)) repeats, which are maintained primarily by telomerase. Telomere length maintenance can be modulated by the expression level of telomerase subunits and telomerase activity. Additionally, telomerase-mediated telomere repeat addition is negatively modulated by the levels of telomere-bound Rap1-Rif1-Rif2 protein complex. Using a yeast strain defective in the major peroxiredoxin Tsa1 that is involved in ROS neutralization, we have investigated the effect of defective ROS detoxification on telomere DNA, telomerase, telomere-binding proteins, and telomere length. Surprisingly, the tsa1 mutant does not show significant increase in steady-state levels of oxidative DNA lesions at telomeres. The tsa1 mutant displays abnormal telomere lengthening, and reduction in oxidative exposure alleviates this phenotype. The telomere lengthening in the tsa1 cells was abolished by disruption of Est2, subtelomeric DNA, Rap1 C-terminus, or Rif2, but not by Rif1 deletion. Although telomerase expression and activity are not altered, telomere-bound Est2 is increased, while telomere-bound Rap1 is reduced in the tsa1 mutant. We propose that defective ROS scavenging can interfere with pathways that are critical in controlling telomere length homeostasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据