4.0 Article

Changes of cortico-muscular coherence: an early marker of healthy aging?

期刊

AGE
卷 35, 期 1, 页码 49-58

出版社

SPRINGER
DOI: 10.1007/s11357-011-9329-y

关键词

Aging; Oscillations; Cortico-muscular coherence; Motor control; Magnetoencephalography

资金

  1. Deutsche Forschungsgemeinschaft [PO 806/3-1]
  2. Research Commission of the Medical Faculty of the Heinrich-Heine University [9772440]
  3. Heinrich-Heine-University [9772467]

向作者/读者索取更多资源

Cortico-muscular coherence (CMC) at beta frequency (13-30 Hz) occurs particularly during weak to moderate isometric contraction. It is a well-established measure of communication between the primary motor cortex (M1) and corresponding muscles revealing information about the integrity of the pyramidal system. Although the slowing of brain and muscle dynamics during healthy aging has been evidenced, functional communication as determined by CMC has not been investigated so far. Since decline of motor functions at higher age is likely to be associated with CMC changes, the present study aims at shedding light on the functionality of the motor system from a functional interaction perspective. To this end, CMC was investigated in 27 healthy subjects aging between 22 and 77 years during isometric contraction of their right forearm. Neuromagnetic activity was measured using whole-head magnetoencephalography (MEG). Muscle activity was measured by means of surface electromyography (EMG) of the right extensor digitorum communis (EDC) muscle. Additionally, MEG-EMG phase lags were calculated in order to estimate conducting time. The analysis revealed CMC and M1 power amplitudes to be increased with age accompanied by slowing of M1, EMG, and CMC. Frequency changes were particularly found in subjects aged above 40 years suggesting that at this middle age, neurophysiological changes occur, possibly reflecting an early neurophysiological marker of seniority. Since MEG-EMG phase lags did not vary with age, changes cannot be explained by alterations of nerve conduction. We argue that the M1 power amplitude increase and the shift towards lower frequencies might represent a neurophysiological marker of healthy aging which is possibly compensated by increased CMC amplitude.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据