4.0 Article

Evidence of DNA damage in Alzheimer disease: phosphorylation of histone H2AX in astrocytes

期刊

AGE
卷 30, 期 4, 页码 209-215

出版社

SPRINGER
DOI: 10.1007/s11357-008-9050-7

关键词

Alzheimer disease; Astrocytes; DNA damage; Neurodegeneration

资金

  1. National Institutes of Health
  2. Alzheimer's Association
  3. Philip Morris USA Inc.
  4. Philip Morris International

向作者/读者索取更多资源

Phosphorylation of the histone family is not only a response to cell signaling stimuli, but also an important indicator of DNA damage preceding apoptotic changes. While astrocytic degeneration, including DNA damage, has been reported in Alzheimer disease ( AD), its pathogenetic significance is somewhat unclear. In an effort to clarify this, we investigated the expression of gamma H2AX as evidence of DNA damage in astrocytes to elucidate the role of these cells in the pathogenesis of AD. In response to the formation of double-stranded breaks in chromosomal DNA, serine 139 on H2AX, a 14-kDa protein that is a member of the H2A histone family and part of the nucleosome structure, becomes rapidly phosphorylated to generate gamma H2AX. Using immunocytochemical techniques, we found significantly increased levels of gamma H2AX in astrocytes in regions know to be vulnerable in AD, i.e., the hippocampal regions and cerebral cortex. These results suggest that astrocytes contain DNA damage, possibly resulting in functional disability, which in turn reduces their support for neurons. These findings further define the role of astrocyte dysfunction in the progression of AD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据