4.4 Article

A computationally efficient 3D finite-volume scheme for violent liquid-gas sloshing

期刊

出版社

WILEY
DOI: 10.1002/fld.4055

关键词

finite volume method; free-surface modelling; volume of fluid method; sloshing; surface capturing; matrix free; parallel computing

资金

  1. Council for Scientific and Industrial Research (CSIR) [TA-2009-013]

向作者/读者索取更多资源

We describe a semi-implicit volume-of-fluid free-surface-modelling methodology for flow problems involving violent free-surface motion. For efficient computation, a hybrid-unstructured edge-based vertex-centred finite volume discretisation is employed, while the solution methodology is entirely matrix free. Pressures are solved using a matrix-free preconditioned generalised minimum residual algorithm and explicit time-stepping is employed for the momentum and interface-tracking equations. The high resolution artificial compressive (HiRAC) volume-of-fluid method is used for accurate capturing of the free surface in violent flow regimes while allowing natural applicability to hybrid-unstructured meshes. The code is parallelised for solution on distributed-memory architectures and evaluated against 2D and 3D benchmark problems. Good parallel scaling is demonstrated, with almost linear speed-up down to 6000 cells per core. Finally, the code is applied to an industrial-type problem involving resonant excitation of a fuel tank, and a comparison with experimental results is made in this violent sloshing regime. Copyright (C) 2015 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据