4.7 Article

A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV

期刊

AEROSPACE SCIENCE AND TECHNOLOGY
卷 16, 期 1, 页码 47-55

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ast.2011.02.006

关键词

Autonomous UAV; Voronoi diagram; Genetic algorithm; Path planning

向作者/读者索取更多资源

A new optimization algorithm called multi-frequency vibrational genetic algorithm (mVGA) that can be used to solve the path planning problems of autonomous unmanned aerial vehicles (UAVs) is significantly improved. The algorithm emphasizes a new mutation application strategy and diversity variety such as the global random and the local random diversity. Clustering method and Voronoi diagram concepts are used within the initial population phase of mVGA process. The new algorithm and three additional GAs in the literature are applied to the path planning problem in two different three-dimensional (3D) environments such as sinusoidal and city type terrain models, and their results are compared. For both of the demonstration problems considered, remarkable reductions in the computational times have been accomplished. (C) 2011 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Engineering, Aerospace

On the use of filament-based free wake panel methods for preliminary design of propeller-wing configurations

Andre F. P. Ribeiro, Carlos Ferreira, Damiano Casalino

Summary: This study compares a filament-based free wake panel method to experimental and validated numerical data in order to simulate propeller slipstreams and their interaction with aircraft components. The results show that the free wake panel method is able to successfully capture the slipstream deformation and shearing, making it a useful tool for propeller-wing interaction in preliminary aircraft design.

AEROSPACE SCIENCE AND TECHNOLOGY (2024)