4.5 Article

Automated Spore Measurements Using Microscopy, Image Analysis, and Peak Recognition of Near-Monodisperse Aerosols

期刊

AEROSOL SCIENCE AND TECHNOLOGY
卷 46, 期 8, 页码 862-873

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/02786826.2012.674232

关键词

-

向作者/读者索取更多资源

Rapid detection of airborne fungal and bacterial spores would enable public agencies to respond quickly and appropriately to intentional releases of hazardous aerosols. Automated analysis of microscope images and automated detection of near-monodisperse peaks in aerosol size distribution data offer complementary approaches to traditional methods for the identification and counting of fungal and bacterial spores. First, spores of the fungus Scopulariopsis brevicaulis were aerosolized in a chamber and then collected with a slit impactor; later, digital microscope images were analyzed manually to determine spore cluster distributions. The images also were analyzed with ImageJ, a program that automatically outlined objects and measured Feret's diameter, area, perimeter, and circularity. These characteristics were used to identify spore clusters automatically using two data analysis methods. Second, a computer program was developed to discriminate near-monodisperse bioaerosol peaks from those for polydisperse ambient particulate matter (PM) and was successfully tested using simulated and real aerosol mixtures. The observed agreement between manual and automated spore counts and the ability to detect spore peaks suggest that it may be possible to develop a system to recognize intentional releases rapidly through examination of particle morphology and size distributions. The peak detection procedure is potentially the fastest technique when used with real-time instrument data, but assumes that intentional releases would consist of large numbers of uniformly sized particles in the respirable size range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据