4.7 Article

Characteristics of multi-walled carbon nanotubes and background aerosols by carbon analysis; particle size and oxidation temperature

期刊

ADVANCED POWDER TECHNOLOGY
卷 24, 期 1, 页码 263-269

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apt.2012.06.013

关键词

Carbon nanotube; Elemental carbon; Carbon monitor; Work environment; Background aerosol; Exposure assessments

资金

  1. Japan Society for the Promotion of Science [23615014]
  2. Grants-in-Aid for Scientific Research [23615014, 23590762] Funding Source: KAKEN

向作者/读者索取更多资源

Novel carbonaceous nanomaterials such as carbon nanotubes and fullerenes have many beneficial characteristics as industrial materials, but exposure to these nanomaterials also poses health risks. As part of an exposure assessment, we characterized the following carbonaceous nanomaterials, using an aerosol carbon monitor: nine samples of multi-walled carbon nanotubes (MWCNTs), a sample of single-walled carbon nanotubes (SWCNTs), a standard sample of diesel exhaust particles (DEPs), and an ambient particulate matter (APM). The amounts of elemental carbon (EC) determined by the monitor coincided with the mass of MWCNTs calibrated by a microbalance. The carbonaceous nanomaterials were oxidized in three steps of oven temperatures (550, 700 and 920 degrees C) in this method. The portion of oxidized carbon at each temperature depended on the sample characteristic. We used the monitor to analyze the aerosol samples collected in five stages by a Sioutas cascade impactor (SCI), which collects size-segregated airborne particles having aerodynamic diameters from 6.6 pm to less than 0.25 mu m. As MWCNTs aggregate/agglomerate easily, the size was of a good parameter to distinguish the MWCNTs from other materials. Two-dimensional mapping by size and oxidized temperature suggested the origin of the carbonaceous aerosol samples. Based on the results, we reanalyzed our previous data obtained at a factory manufacturing MWCNTs. The characteristics of workplace samples by particle size and carbon analysis were similar to those of MWCNT aerosol particles. (C) 2012 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据