4.8 Review

The Interaction between Quantum Dots and Graphene: The Applications in Graphene-Based Solar Cells and Photodetectors

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 28, 期 50, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201804712

关键词

2D materials; energy transfer; photodetector; quantum dots; solar cells

资金

  1. National Natural Science Foundation of China [51672150]
  2. Special Foundation of Young Professor of Zhejiang University [2013QNA5007]

向作者/读者索取更多资源

Graphene with a series of neoteric electronic and optical properties is an intriguing building block for optoelectronic devices. Over the past decade, graphene-based solar cells (SCs) and photodetectors (PDs) which can convert light signals to electrical signals have received burgeoning exploration. However, limited light absorption hampers the performance of these devices. Quantum dots (QDs) possess a strong confinement effect, a large exciton energy, and long exciton lifetime, enhancing the interaction between incident light and graphene. Especially, as the density of states near the Dirac point of graphene is ultralow, it is easy to modify the Fermi level of graphene by inserting quantum dots at the interface between graphene and light, thereby enhancing the performance of graphene-based optoelectronic devices. The characteristics of QDs and crucial physical mechanisms of the interaction and energy transfer in QDs/graphene nanohybrids are systematically addressed. The factors influencing the efficiency of energy transfer are also analyzed quantitatively. Moreover, the experimental process of QD-enhanced technologies for SCs, photoconductors, phototransistors, and photodiode PDs is reviewed. Eventually, a conclusion is given and the remaining challenges and future development for QDs/2D materials hybrid systems is discussed. Possible steps toward large-scale commercial applications and integration into optoelectronic networks are suggested.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据