4.8 Article

Molecular Weight-Induced Structural Transition of Liquid-Crystalline Polymer Semiconductor for High-Stability Organic Transistor

向作者/读者索取更多资源

In order to fabricate polymer field-effect transistors (PFETs) with high electrical stability under bias-stress, it is crucial to minimize the density of charge trapping sites caused by the disordered regions. Here we report PFETs with excellent electrical stability comparable to that of single-crystalline organic semiconductors by specifically controlling the molecular weight (MW) of the donor-acceptor type copolymer semiconductors, poly (didodecylquaterthiophene-alt-didodecylbithiazole). We found that MW-induced thermally structural transition from liquid-crystalline to semi-crystalline phases strongly affects the device performance (charge-carrier mobility and electrical bias-stability) as well as the nanostructures such as the molecular ordering and the morphological feature. In particular, for the polymer with a MW of 22 kDa, the transfer curves varied little (Delta V-th = 3 similar to 4 V) during a period of prolonged bias stress (about 50 000 s) under ambient conditions. This enhancement of the electrical bias-stability can be attributed to highly ordered liquid-crystalline nanostructure of copolymer semiconductors on dielectric surface via the optimization of molecular weights.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据