4.8 Article

Protein-Enabled Synthesis of Monodisperse Titania Nanoparticles On and Within Polyelectrolyte Matrices

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 19, 期 14, 页码 2303-2311

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.200801825

关键词

-

资金

  1. Air Office of Scientific Research
  2. Air Force Research Laboratory
  3. National Science Foundation
  4. Office of Naval Research
  5. Wiley InterScience

向作者/读者索取更多资源

Here, the results of a study of the mechanism of bio-enabled surface-mediated titania nanoparticle synthesis with assistance of polyelectrolyte surfaces are reported. By applying atomic force microscopy, surface force spectroscopy, circular dichroism, and in situ attenuated total reflection Fourier-transform infrared spectroscopy, structural changes of rSilC-silaffin upon its adsorption to polyelectrolyte surfaces prior to and during titania nanoparticle growth are revealed. It is demonstrated that the adhesion of rSilC-silaffin onto polyelectrolyte surfaces results in its reorganization from a random-coil conformation in solution into a mixed secondary structure with both random coil and beta-sheet structures presented. Moreover, the protein forms a continuous molecularly thin layer with well-defined monodisperse nanodomains of lateral dimensions below 20 nm. It is also shown that rSilC embedded inside the polylelectrolyte matrix preserves its titania formation activity. It is suggested that the surface-mediated, bio-enabled synthesis of nanostructured materials might be useful to develop general procedures for controlled growth of inorganic nanomaterials on reactive organic surfaces, which opens new perspectives in the design of tailored, in situ grown, hybrid inorganic-organic nanomaterials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据