4.6 Article

Induction and functional significance of the heme oxygenase system in pathological shear stress in vivo

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00882.2014

关键词

vascular injury; heme oxygenase; shear stress; inflammation; cytokines

资金

  1. National Institutes of Health [DK-70124, DK-47060, HL-91867, T32-DK-007013]
  2. Mayo Clinic Center for Regenerative Medicine

向作者/读者索取更多资源

The present study examined the heme oxygenase (HO) system in an in vivo murine model of pathological shear stress induced by partial carotid artery ligation. In this model, along with upregulation of vasculopathic genes, HO-1 is induced in the endothelium and adventitia, whereas HO-2 is mainly upregulated in the endothelium. Within minutes of ligation, NF-kappa B, a transcription factor that upregulates vasculopathic genes and HO-1, is activated. Failure to express either HO-1 or HO-2 exaggerates the reduction in carotid blood flow and exacerbates vascular injury. After artery ligation, comparable induction of HO-2 occurred in HO-1(+/+) and HO-1(-/-) mice, whereas HO-1 induction was exaggerated in HO-2(-/-) mice compared with HO-2(+/+) mice. Upregulation of HO-1 by an adeno-associated viral vector increased vascular HO-1 expression and HO activity and augmented blood flow in both ligated and contralateral carotid arteries. Acute inhibition of HO activity decreased flow in the ligated carotid artery, whereas a product of HO, carbon monoxide (CO), delivered by CO-releasing molecule-3, increased carotid blood flow. In conclusion, in the partial carotid artery ligation model of pathological shear stress, this study provides the first demonstration of 1) upregulation and vasoprotective effects of HO-1 and HO-2 and the vasorelaxant effects of CO as well as 2) vascular upregulation of HO-1 in vivo by an adeno-associated viral vector that is attended by a salutary vascular response. Induction of HO-1 may reside in NF-kappa B activation, and, along with induced HO-2, such upregulation of HO-1 provides a countervailing vasoprotective response in pathological shear stress in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据