4.4 Article

Transplantation of neurotrophin-3-expressing bone mesenchymal stem cells improves recovery in a rat model of spinal cord injury

期刊

ACTA NEUROCHIRURGICA
卷 156, 期 7, 页码 1409-1418

出版社

SPRINGER WIEN
DOI: 10.1007/s00701-014-2089-6

关键词

Neurotrophin-3; Spinal cord injury; Mesenchymal stem cells; Vascular endothelial growth factor (VEGF); Brain-derived neurotrophic factor (BDNF)

资金

  1. Scientific and Technological Projects of Shanxi Province [20120321028-02]
  2. Scientific Research Projects of Shanxi Province Health Department [201201067]
  3. NSFC (National Nature Science Foundation of People's Republic of China) [81371628]

向作者/读者索取更多资源

This study aimed to investigate the therapeutic effects of transplanting neutrophin-3 (NT-3)-expressing bone marrow-derived mesenchymal stem cells (BMSCs) in a rat model of spinal cord injury (SCI). Forty-eight adult female Sprague-Dawley rats were randomly assigned to three groups: the control, BMSC, and NT-3-BMSC groups. BMSCs were infected with NT-3-DsRed or DsRed lentivirus and injected into the cerebrospinal fluid (CSF) via lumbar puncture (LP) 7 days after SCI in the NT-3-BMSC and BMSC groups, respectively. The hind-limb motor function of all rats was recorded using the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale on days 1, 3, 7, 14, 21, 28, and 35 after transplantation. Haematoxylin-eosin (HE) staining, immunofluorescence labelling, and western blotting were performed at the final time point. Expressions of NT-3, brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) proteins increased significantly in the NT-3-BMSC group, and hind-limb locomotor functions improved significantly in the NT-3-BMSC group compared with the other two groups. The cystic cavity area was smallest in the NT-3-BMSC group. In the NT-3-BMSC group, neurofilament 200 (NF200) and glial fibrillary acidic protein (GFAP) expression levels around the lesions were significantly increased and decreased, respectively. Our findings demonstrate that transplantation of NT-3 gene-modified BMSCs via LP can strengthen the therapeutic benefits of BMSC transplantation. We observed that these modified cells increased locomotor function recovery, promoted nerve regeneration, and improved the injured spinal cord microenvironment, suggesting that it could be a promising treatment for SCI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据