4.5 Article

Continuum damage mechanics: combining thermodynamics with a thoughtful characterization of the microstructure

期刊

ACTA MECHANICA
卷 201, 期 1-4, 页码 297-312

出版社

SPRINGER WIEN
DOI: 10.1007/s00707-008-0064-0

关键词

-

向作者/读者索取更多资源

We formulate a macroscopic description of the mechanics of damaged materials. To represent the microstructure, the distribution of crack sizes is captured by way of the Minkowski functionals, or so-called quermass integrals, while a second-rank tensor is used to describe the average orientation of the cracks. A two phase-type approach is adopted to distinguish elastically strained material from unstrained regions in the wake of the cracks. Using nonequilibrium thermodynamic techniques, the driving force for the growth of the microcracks is naturally identified. In particular, Griffith's law is generalized to assemblies of polydisperse crack sizes. Due to the detailed characterization of the microstructure, we are also able to account for the plastic zones at the rims of the cracks that are known to hamper the crack growth, and to discuss possible forms of the damage parameter. The presented approach separates in a transparent fashion the incorporation of fundamental thermodynamic and mechanic principles on one hand, from the specification of the material and details of the crack formation and growth on the other hand.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据